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Stable resonances and signal propagation in a chaotic network of coupled units
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We apply the linear response theory developed by Ruéli&tat. Phys95, 393(1999] to analyze how a
periodic signal of weak amplitude, superimposed upon a chaotic background, is transmitted in a network of
nonlinearly interacting units. We numerically compute the complex susceptibility and show the existence of
specific polegstable resonancgsorresponding to the response to perturbations transverse to the attractor.
Contrary to the poles of correlation functions they depend on the pair emitting-receiving units. This dynamic
differentiation, induced by nonlinearities, exhibits the different ability that units have to transmit a signal in this
network.
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I. INTRODUCTION it emits, at timet+ 1, a signal which is a sigmoid function of

Currently, there is considerable research activity in net{N€ global inpufsee Eq(2)]. In the model studied below, the
work dynamics. This is clearly motivated by the wide expan-9/0Pal dynamics has generically a chaotic attractor, provided

sion of communication medianobile phones, Internet, mul- that the nonlinearity of the transfer function is sufficiently

timedia, etg), but also by the growing interest in network [a7g€ (sée Sec. Il In spite of the presence of chaos it is
modeling of biological processeseural networks, genetic possible to analyze how a periodic signal of weak amplitude,

networks, ecological networks, etcA large part of these superimposed upon a chaotic background, is transmitted in

studies focuses on topological properties of the underlying"€ Network. However, as discussed above, this analysis re-
uires the consideration of the network structasewell as

graph. However, in many cases, the nodes of the networ ;
nonlinear effects.

&rﬁnuan;tr\SicgigﬁvrI;?ngrI? ;)r:graea:gvz)rqeror exﬁ‘ﬁr:: pl?,\’,elgka The main tool we use for this investigation is the linear
Yy reg a@siplifies response theory developed by Rudlé for hyperbolic dy-

signals, but it has a finite capacity and saturates if 00 many,mica| systemee.g., dissipative systems with a chaotic at-
signals arrive simultaneously. A neuron has a nonlinear reg,

: > < ) %Ector) in a nonequilibrium steady state. This theory allows
sponse to an input current, a gene expression is determingfd 1 compute explicitly the variation of the average value of

by a nonlinear function of the regulatory proteins concentray generic observable, induced by a time-dependent signal of
tion, etc. These nonlinearities might modify the networkyeak amplitude. Indeed, provided that the amplitude of the
abilities in a drastic way. For example, a relay may have aignal is sufficiently smalibut finite), this variation is a lin-
high graph connectivity“hub”), but the dynamics drives it ear function of the signal and a linear response operator is
close to its saturation point, so that it has a weak reactivity t@xplicitly given in terms of the dynamic evolution. In our
the changes in the inputs coming from the other units and aase, this operator has a simple expresgsee Eq(6)]. The
poor capacity to transmit information. Consequently, the in-effects of a periodic signal emitted by a unit on a receiving
formation is transmitted via other units, possibly weakerunit are characterized by the Fourier transform of the linear
links, and, in this regime, these units become temporaryesponse, calledusceptibilityin the sequelsee Sec. V.
“hubs” though they may have a low graph connectivity, This gives us a frequency response cuisee Fig. 1 exhib-
while the main hub is decongested. In biological networksiting resonances peaks. These resonances corresponds to
similar effects may arise. For example, the capacity of acomplex poles for the analytic continuation of the suscepti-
neuron to transmit a specific excitation strongly depends omility in the complex plane. They have a nice interpretation
its state, determined itself by the overall currents comingn Ruelle theory.
from afferent neurons. Indeed, in this theory, the linear response operator is the
This suggests us that the mere study of the graph topessum of two contributions. There is a regular term, corre-
logical structure of a network with nonlinear units is not sponding to the response to perturbations “parallel” to the
sufficient to capture the full dynamical behavior. However,attractor(more precisely locally projected along the unstable
there are relatively few studies which analyze the joint effectmanifold). This term is actually a correlation functidi2]
of topology of the network and nonlinearity. Nevertheless,and, consequently, it obeys classical relations such as the
these networks are dynamical systems with a large numbdiuctuation-dissipation theorem. The poles of its Fourier
of degrees of freedom, and so dynamical systems theory arttansform are called Ruelle-Pollicott resonang@&sor “un-
statistical mechanics provide a powerful framework to statestable” poles. They give the rate of mixing of the chaotic
problems in a well-defined way and to propose solutions. system or, equivalently, the relaxation rate to equilibrium for
In this paper, we analyze the following situation. We con-a perturbation “on” the attractor. These poles are independent
sider a network composed by a setMfunits receiving and of the observable. Therefore, in our case, they are indepen-
transmitting signals. At each time stephe uniti receives a dent of the pair emitting-receiving unisee Fig. 2 When
bench of signals coming from each unit connected to it, andocusing on the response to the real frequency one observes
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FIG. 1. (Color onling Modulus of the susceptibilitiegss, xas,

- FIG. 3. (Color onling Left column: susceptibilitie§ss, X3 and
and X71-

Xe3 and reconstruction by the nonlinear fittif®ILF) algorithm

heref K Il pai £ uni used to compute the poles. Right column: poles of susceptibility
therefore resonance peaks common to all pairs of units, a quaresand poles of correlationgepresented by a star

these peaks are also present in the Fourier spectrum of the

corresponding correlation function. . : .
The second term corresponds to the response to perturbgt'eﬂy the main results of the Ruelle linear response theory

tions locally projected along stable manifolds—namely,used in Fhis paper. An explicit computatipr_w of thg Iingar re-
transverseto the attractor. Therefore, it exists only in the SPONSe is performed. It shows the explicit contributions of
dissipative case. It does not obey the fluctuation-dissipatiof'¢ Network topology and of the nonlinearity in a signal

theorem and has drastically different properties than the firdgfoPagation. In Sec. IV we compute numerically the fre-
term. In particular its pole¢‘stable” poles are expected to quency response curve and discuss the different resonance

be distinct from the unstable poles. In this paper, we indee@eak_s' The poles of the complex suscgptibility for a few pair_s
exhibit such stable poles. To the best of our knowledge, thi€f unllts are comprl:ted and compared in the Sec. V. Our main
is the first example where these poles are explicitly exhipconclusions are then drawn.

ited, though their existence was theoretically proved. More-

over, we show numerically that the stable poles depend on Il. MODEL
the pair emitting-receiving unitsee Fig. 3. When focusing . . . -
on the response to real frequency one observes thersere Consider the following dynamical system, originally pro-

cific resonances peaksee Fig. 1. This shows that a unit POSed in the context of neural networtsee[4-€] and ref-

receiving a periodic signal emitted from another unit may€"€nces therejn The output signal is a function of the

respond in a specific way to this signal, the amplitude deWeighted sum of the signals arriving a@at timet and is

pending both on the signal frequency aad the emitting 91Ven by

unit. Note that according to the discussion above this effect N

cannot be observed by studying correlation functions. u(t+1)= > i f(uj(0)). (1)
The paper is organized as follows. In Sec. Il we introduce j=1

the model and discuss its properties. Section |lI recalls]_he weights]’s may be positiveexcitatory, negative(in-
ij ’

02— 717 hibitory), or zero(no direct link between andi). They are in
general nonsymmetrid; # J;;). Thus, the matrix of weights,
J, defines an oriented graph such that there is a link froon

i if and only if J;#0. The global dynamics can also be
written as

28 8

01} © —

AR

8

ut+1)=G(u() =Jf(u), (2)

where u(t):{ui(t)}i’i1 and where we used the notation
f(u(t)):{f(ui(t))}i“il. Consider now the case where the non-
_ linear transfer functiorf is a sigmoid[e.g. f(x)=tanHgx)],
where the parametey controls the nonlinearity. In terms of
input-output ratio, a unit amplifies weak signals g>1),
P I T T T S T but with a limited capacityf “saturates” if the local field is

° 05 1 e 25 8 too strong, and the variations of the output signal are all the

weaker as the local field is big. Thus, the capacityi ¢

FIG. 2. (Color onling Poles of several correlation functions. retransmit a signal emitted frot does not only depend on
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the weight { but also on the state of saturation of i when it a linear functional of £(t). This is the content of thénear
receives the signal coming from Kote also that the Jaco- response theorgeveloped by Ruell§l] for the chaotic and
bian matrixDG(u) is written DG;;(u)=J;;f’(u;) wheref’ is dissipativé system. Some aspects of this theory are briefly
the derivative off. Therefore, the volume variation is pro- recalled in the next section.

portional toHiNzlf’(ui). Therefore, in this model, the dynami-
cal contraction is closely related to the saturation of the sig-
moid transfer function.

In order to emphasize the effects of the nonlinearity and Tpe unperturbed dynamical systé®) has a strangécha-
minimize the effect of the network topology, one may as-otic) attractor for sufficiently large. Usually, strange attrac-
sume that the network is fully connected and thatJfieare (o5 carry a natural probability measure called the Sinai-
drayvn randomly_ with respect to some smooth d'Stf'bUt'O”RuelIe-Bower(SRB) measurd7]. If one prepares the system
(uniform, Gaussian, efc.As an example, one may fix the (3) with an initial macrostatex having a uniform density
average valug¢J; ]=0 and the variancpJjj]=1/N (to ensure  [j e, (du)=du], corresponding to selectintypical initial
the correct normalization of the local field with sidg. This  gnditions, then, provided that the limit exists, the SRB mea-
example is interesting because the sys@yexhibits a wide g e is the asymptotic macrostatelim, .. G{u whereGiu
variety of dynamical regimegstatic, periodic, quasiperiodic, js the image ofw under thetth iterate ofG. The SRB mea-
chaotig. More precisely, it has been shown [B] that it gyre has several remarkable features which make it
generically exhibits a transition to chaos by quasiperiodicitynatural.”? One of its most important properties for practical
wheng increases. Note that the same transition occurs if th%urposes is the following: IA is some observabi@ smooth

dom) chosen at random, provided the variance of dhs

scales like 1K. However, we do not address this case in this
paper since we want to minimize the effect of the network (A= f A(u)p(du), (4)
structure. Note also that this type of transfer function allows
dynamical regimes where several attractors coexist. It hal§ equal to the time average alotypical trajectories This
been indeed shown if5,6] that, adding a threshold to the =~ Means that “ensemble average” and time average are equiva-
local f|e|d’ there exists a region in the parameter S@.@ Iently for typlcal trajeCtorieS. This is eSpeCially useful for
where two attractors coexist. This region can be analyticalljyumerical computationgsee next section
computed. However, in the present paper, the parameters are APplying a time dependent perturbatigtt) to the system
located in a region where there is only one attractor and alinduces time dependent changes in the statistical averages.
initial conditions converge to this attractor. More precisely, the natural extension of the SRB measure
Let us now assume that the nonlinearity is large enouglilefined above is d@ime dependenSRB measurep. It is
so that the global dynamics has a chaotic attragigth all ~ given by the(weak limit limg ... G'...G"Su. The corre-
Lyapunov exponents bounded away from zero and at leasiponding average will be denoted by.
one positive Lyapunov expongnt It has been established [ith] thata linear response theory
We now add a signal of small amplitudét) to the output  exists for uniformly hyperbolic diffeomorphishin our
of some units. Then the evolution of the perturbed systemframework, this means that, provide#lt) is sufficiently
denoted by, is given by small and for any smooth observab®e the variation(A),

_ ~ —(A) is proportional to £(t) up to small nonlinear correc-
u(t+1) =G(U(n) + &t = GU(). 3

Note that the formalism introduced below accommodates the 'Dissipative means here that the phase space volume is contracted
generalization wheré(t) depends also ou(t), but we do not by the dynamic evolution.
consider this case here. “Sinai, Ruelle, and Bowen have indeed shown that the SRB mea-
We want to investigate the capacity of the network tosure is a Gibbs-like measure. Moreover, it maximizes some version
transmit signal&(t) superimposed upon the chaotic back- of a free energytopological pressude it has therefore the char-
ground. This is a complex problem since after a few timeacteristics of an equilibrium state. A crucial property for the present
steps the total signal arriving at tintet k includes the sum WOrk is that a SRB measure has a density along the unstable mani-
of contributions corresponding to different paths followed byfolds, but it is singular in the directions transverse to the attractor.
& with different time delays. Moreover, along a path theThis feature is at the origin of the distinction between unstable and
signal can be damped ffis saturatedf’ <1) or amplified ~ StaPle poles of the susceptibility. o
(f’>1). Finally, the dynamics being chaotic, after a suffi- “We only know that the systei®) is weaklyhyperbolic; i.e., al

iently | . he i lis di d by th i ... _the Lyapunov exponents are bounded away from zero. Neverthe-
ciently long time the ,S',gna Is distorted by the non InearltlesIess, we will adopt the point of view defended[ity]. If there is a
and scrambled by mixing.

. . linear response theory for our system, it is necessarily of the form

_ To tackle this problem we analyze how the differencegqg (5) and (6), since there are no reasonable alternative. What

t(t)-u(t) between the perturbed and unperturbed dynamicgoyid happen is that the sum diverges, leading to an infinite re-

behaveon averageas a function of(t). Wheng(t) is small  sponse. On numerical grounds, one has to check that the time av-
enough and in spite of the initial condition sensitivity intrin- erage used to compute the ergodic aver@ge Eq(12)] does not

sic to chaotic systems, it can be shown that this difference igcrease with the sample length.

Ill. LINEAR RESPONSE THEORY

056111-3



B. CESSAC AND J. A. SEPULCHRE PHYSICAL REVIEW O, 056111(2004)

tions. In other wordsp, is differentiablewith respect to the to consider both the topology of the interaction grapidthe

perturbation. The derivative is called theear response. nonlinear dynamical regime of the system.
The theory developed by Ruelle allows one to compute
the linear response for general perturbations depending both IV. COMPLEX SUSCEPTIBILITY

on timet and stateu and for a general observabe In our o
context, however, where the considered observables are sim- One can decompose the response func{@ninto two

ply the variables of system®) and(3), the linear response terms. The first one is obtained by locally projecting the
has a simple form, which can be written as Jacobian matrix on the unstable directions of the tangent
space. This term will be named the “unstable” response func-

- - tion. It corresponds to a linear response of the system to
Uy —(u)= > x(nét-7-1), ®) perturbations locally parallel to the local unstable manifold
= (roughly speaking, perturbations “on” the attragt@ne can
where x(7) represents the averaged Jacobian matrix show that the linear response associated with this type of
perturbation is in fact a correlation function, as found in
x(7) =(DG"(u)), (6)  standard fluctuation-dissipation theorenit]. Hence, as

usual for correlation functions of a chaotic systéndecays
exponentially(because of mixingand the decay rates are
associated with the poles of its Fourier transform. More pre-
cisely, these exponential decay rates correspond to the imagi-
nary part of the complex poles of the unstable part of the
gusceptibility(S). Thus they will be called “unstable” poles.
fore generally, it can be shown that these poles are also the
eigenvalues of the operator governing the time evolution of
the probability densitieswhich we denoted above &'u),

the so-called Perron-Frobenius operd®jr Therefore, these

. . o . poles, whose signatures are visible in the peaks of the modu-
is seen that if only one unjtis perturbed at timé=-1by a |5 of the correlation functions, do not depend on the observ-
kick of amplitudee [that is, £(t) = eg;o(t+1) with the Kroe- g6 though some residues may accidentally vanish for a
necker symbob and thejth unit vectore], theney;;(t) gives given observable.

precisely the mearesponseof uniti at timet. This suggests = The second terfhis obtained by locally projecting the

to define thesusceptibilityof the network as the Fourier jacobian matrix on the stable directions of the tangent space.

for 7=0. Otherwise,x(7)=0 (which is consistent with the
requirement of causalily

A remarkable consequence of Ruelle theory is aj is
a bounded function for alk=0. In particular, it does not
diverge exponentially fast, despite the presence of a positiv
Lyapunov exponent. As discussed below, this is essentially
consequence of exponential mixing.

In what concerns network dynamics, E§) is interpreted
as giving the average response of unitf the system when
the network is submitted to weak sigrét). In particular, it

transform ofy;(t):  namely, It corresponds to the response to perturbations locally paral-
o lel to the local stable manifolgnamely, transverse to the
NOEDBLR @) attractoy. Therefore, it isexponentially dampedy the dy-

namical contraction(Note that, according to the specific
form of the Jacobian matrix, this contraction is, in our case,
This matrix function will be numerically computed and stud- mainly due to the saturation of the sigmoid transfer func-
ied in the next section. We conclude the present section byon)_ The corresponding exponential decay rates are given
analyzing further the structure gf;(7) in the case of the py the complex poleg'stable” poles of the stable part of the
dynamical systenil). Here one can decompogg(7) as complex susceptibility. But here the poles departiori on
T , the observable. One can easily figures this out if one decom-
_ , poses the stable tangent space of a point in the orthogonal
xij(7) = Z(T) E Ty E Flug_,(1-2) /. (8) basis of Oseledec modédirections associated to each of the
i negative Lyapunov exponenfThe projection of theth ca-
The sum holds on each possible pag(7), of length 7, nonical basis vector on thih Oseledec mode depends ion
connecting the uniky=j to the unitk.=i, in 7 steps. One andk. This dependence persists even if one takes an average
remarks that each path is weighted by the producttwipa-  along the trajectory, as in E¢6).
logical contribution depending only on the weighf and a Hence, both stable and unstable terms are exponentially
dynamical contribution. Since, in the kind of systems we damped, ensuring the convergence of the séBgsbut for
consider, the function$ are sigmoids, the weight of a path completely different reasons. Moreover, the stable and un-
7;j(7) depends crucially on the state of saturation of the unitstable parts of the linear response have drastically different
Ko, .. K~y at times O,...7—1. Especially, if f'(uy_ (I properties. As a matter of fact, the stable pamot a corre-
-1))>1, a signal is amplified, while it is damped if Iqtio_n f_unction and it dqes not obey the fluctuation-
f'(ug_(1-1))<1. Thus, though a signal has many possibili- dissipation theoremIn particular, the unstable poles and
ties for going fromj to i in 7time steps, some paths may be
“better” than some others, in the sense that their contribution Note that a linear response theory has also been proposéd in
to x;(7) is higher. Therefore Eq8) underlines a key point However, it requires the invariant measure to have a density. This is
discussed in the Introduction. The analysis of signal transenly true for the conditional measure along unstable manifolds. As
mission in a coupled network of dynamical units requires us matter of fact, this theory does not contain the stable term.

t=—
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stable poles are expected to be distinct. In this paper, we givieiations decrease like T according to the central limit
for the first time evidence of this theoretically predicted ef-theorem.
fect. Moreover, we show that the stable poles indeed allow In Fig. 1 we have plotted the modulus of the susceptibili-
us to distinguish the units in their capacity to transmit aties ys3 xas and x7;. Comparing these functions, one re-
signal. marks that there are thin peaks essentially located at the same
For this we first numerically compute the susceptibility frequencies, with different heights. Moreover, these frequen-
(7) for real values ofw. The computation is based on the cies are harmonics of a fundamental frequetway~ 0.166.
following remark. Let us consider perturbatiorV(t)  This is expected from the frequency locking in the quasip-
=egicoqwt) and £2(t)=—ee;sin(wt) and letu™,u'? denote  eriodic transition preceding chaos. Some of these frequencies
the variables of the corresponding perturbed systems: are also present in the Fourier spectrum of the correlation
functions but with a smaller amplitude and some peaks are

(3 = (K K -
ut(t+ 1) =G + 90 (k=1,2). ) indistinguishable from the background. Instead, all harmonic
Then it follows from Eq.(5) that: peaks are revealed in the susceptibility spectrum.
. But we also note that for many peaks, tivath varies
Dy _ 2y _
(U= (W) + iU = (i) strongly from a paiij to another. This means that theso-
_ 3 —iw(t-m1) nance strengtldepends on which unit is excited and which
- 62 XIJ (T)e . . .
N unit responds. In particular, some peaks are very thin, corre-

R it-1) sponding to an accurate resonance while some others are
= exij(w)e : (10 proad. In terms of poles, this means that the imaginary parts

Note that the time-dependent average response to period€ distinct and Conseque_ntly _the corresponding_ _poles are
perturbation is therefore periodic. The linear response at tim@ifferent (see the next sectignFinally there areadditional

t is an infinite sum corresponding to contributions of time P&aks strongly dependent on the pair

delayed signals following different paths. Since the signal is 1hus, @ simple glance to Fig. 1 tells us that the frequency
sinusoidal, the terms in this sum may interfere in a construct®SPonse of a unit to the excitation emitted by a unijt

tive way (but exponential damping prevent the series to di-Strongly depends on the pairj. As discussed above and
verge, ensuring the existence of a linear resppnse numerically shown below, this difference comes from the

Since k() is independent of, then it is equakfor stable part of the linear response. Consequently, the specific-
+0) to the time average ity of the response is revealed only if one conS|d_er perturba-
. tions transverseto the attractor(Note that, generically, the
signal is a perturbation, having local projections both on lo-

. 1 ot .
Xij(@) =T|'El T_Et—zo VU +iuPx]. (1D cal stable and unstable spages.

. K\

The tlme-d.e.pend.ent ave.rag@é ); involve an average over V. UNSTABLE AND STABLE POLES

initial conditions in the distant past. One can reasonably as- .

sume that the above average ovenakes the average over ~ Resonances correspond to poles in the complex plane. As
the initial conditions unnecessary. Then one may write @ maitter of fact, the position of the maximum of the peak

T corresponds to the real part of the pole, its width is related to
< N NI , its imagi d the value of th i is related
() = 2N o0 41y its imaginary part, and the value of the maximum is relate
Xii(@) T'Tl T% € [0 +iu=®], (12 to the residue. From this observation, we developed an algo-

rithm to estimate the residue width and locations of the

where theu(t) (k=1,2) are obtained by iterating mag8).  poles. Letw,=w, +iw; be a simple pole of andA its resi-
This provides a straightforward way to compute the suscepdue. If one multipliesy by a phase factoe'?, then the real
tibility, where most of the computing time goes into comput-and imaginary parts rotate continuously, without changing
ing the orbitsu®(t). the modulus. If the pole is close enough to the real axis, then

As an example, we performed a numerical computation ofhere exists a phasgsuch that, on the real axis, the real part
the dynamical systerf2) where we take a fixed realization of has a characteristic Lorentzian shape symmetric with respect
J;'s, with N=8 units. There is a quasiperiodic transition to to w, while the imaginary part is antisymmetric. Then a non-
chaos ag increases. The system is studied §er3.5 corre-  linear curve fitting allows us to determin®, w,, and w;.
sponding to a positive Lyapunov exponent=0.158, while  Once a local analysis has roughly determined the poles, a
the second one i\,=-0.183. The system is therefore global nonlinear fit(Levenberg-Marquardi9]) allows us to
weakly hyperbolic(all Lyapunov exponents bounded away localize the poles with a better accuracy.
from 0). In Fig. 2 we have plotted the real and imaginary parts of

The function x(w), the Fourier transform of the matrix the poles of several correlation functions. One notices that all
(8), has been computed with a resolutichw=7/2048  pairs of units have poles at the same valuevpivithin the
~1.53x 10°3. The average is done with 26 214 400 sampleserror bars. We have also plotted in Fig. 3 the modulus of the
We did several runs where we varied the len§tf the time  susceptibilitiesyss, Xz andxs3 (left column) and the corre-
average in Eq(12). We checked that the global structure is sponding polegright column with the poles of the correla-
the same. In particular the amplitude of the susceptibilitytion functions. As expected from Fig. 1 we observe common
|x(w)| does not depend on {Eee footnote B Also the fluc-  poles (unstable polesbut alsodistinct poles (stable poles)
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that, moreover, strongly depend on the pair receiving-argue on theoretical grounds and numerically shisee Fig.
emitting unit 2) that the dynamics differentiation is not revealed by corre-
Finally, note that some poles are very close to the realation functions. It is purely an effect of the dynamics trans-
axis. Since their imaginary part is related to the coherenceerse to the chaotic attractor that must be handled with the
time of the response to a kick, this tells us that the responsproper tools. We show that the linear response gives quite a
to a pulse may subsist for quite a bit long times, though théit more information than the correlation function, provided
underlying dynamics is chaoti€Recall, however, that the that its computation takes into account the singularity of the
linear response measures variations of dieragevalue of SRB measure transversally to the attractor. This is the case
the observablesThis intriguing and exciting aspect will be with Ruelle linear response theory and this opens the per-
developed elsewhere. spective for developing an extension of statistical mechanics
for the analysis of networks dynamics with nonlinear units.
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