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We apply the linear response theory developed by Ruelle[J. Stat. Phys.95, 393 (1999)] to analyze how a
periodic signal of weak amplitude, superimposed upon a chaotic background, is transmitted in a network of
nonlinearly interacting units. We numerically compute the complex susceptibility and show the existence of
specific poles(stable resonances) corresponding to the response to perturbations transverse to the attractor.
Contrary to the poles of correlation functions they depend on the pair emitting-receiving units. This dynamic
differentiation, induced by nonlinearities, exhibits the different ability that units have to transmit a signal in this
network.
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I. INTRODUCTION

Currently, there is considerable research activity in net-
work dynamics. This is clearly motivated by the wide expan-
sion of communication media(mobile phones, Internet, mul-
timedia, etc.), but also by the growing interest in network
modeling of biological processes(neural networks, genetic
networks, ecological networks, etc.). A large part of these
studies focuses on topological properties of the underlying
graph. However, in many cases, the nodes of the networks
are units behaving in anonlinear way. For example, in a
communication network a relay regenerates(amplifies) weak
signals, but it has a finite capacity and saturates if too many
signals arrive simultaneously. A neuron has a nonlinear re-
sponse to an input current, a gene expression is determined
by a nonlinear function of the regulatory proteins concentra-
tion, etc. These nonlinearities might modify the network
abilities in a drastic way. For example, a relay may have a
high graph connectivity(“hub”), but the dynamics drives it
close to its saturation point, so that it has a weak reactivity to
the changes in the inputs coming from the other units and a
poor capacity to transmit information. Consequently, the in-
formation is transmitted via other units, possibly weaker
links, and, in this regime, these units become temporary
“hubs” though they may have a low graph connectivity,
while the main hub is decongested. In biological networks
similar effects may arise. For example, the capacity of a
neuron to transmit a specific excitation strongly depends on
its state, determined itself by the overall currents coming
from afferent neurons.

This suggests us that the mere study of the graph topo-
logical structure of a network with nonlinear units is not
sufficient to capture the full dynamical behavior. However,
there are relatively few studies which analyze the joint effect
of topology of the network and nonlinearity. Nevertheless,
these networks are dynamical systems with a large number
of degrees of freedom, and so dynamical systems theory and
statistical mechanics provide a powerful framework to state
problems in a well-defined way and to propose solutions.

In this paper, we analyze the following situation. We con-
sider a network composed by a set ofN units receiving and
transmitting signals. At each time stept the unit i receives a
bench of signals coming from each unit connected to it, and

it emits, at timet+1, a signal which is a sigmoid function of
the global input[see Eq.(2)]. In the model studied below, the
global dynamics has generically a chaotic attractor, provided
that the nonlinearity of the transfer function is sufficiently
large (see Sec. II). In spite of the presence of chaos it is
possible to analyze how a periodic signal of weak amplitude,
superimposed upon a chaotic background, is transmitted in
the network. However, as discussed above, this analysis re-
quires the consideration of the network structureas well as
nonlinear effects.

The main tool we use for this investigation is the linear
response theory developed by Ruelle[1] for hyperbolic dy-
namical systems(e.g., dissipative systems with a chaotic at-
tractor) in a nonequilibrium steady state. This theory allows
us to compute explicitly the variation of the average value of
a generic observable, induced by a time-dependent signal of
weak amplitude. Indeed, provided that the amplitude of the
signal is sufficiently small(but finite), this variation is a lin-
ear function of the signal and a linear response operator is
explicitly given in terms of the dynamic evolution. In our
case, this operator has a simple expression[see Eq.(6)]. The
effects of a periodic signal emitted by a unit on a receiving
unit are characterized by the Fourier transform of the linear
response, calledsusceptibility in the sequel(see Sec. IV).
This gives us a frequency response curve(see Fig. 1) exhib-
iting resonances peaks. These resonances corresponds to
complex poles for the analytic continuation of the suscepti-
bility in the complex plane. They have a nice interpretation
in Ruelle theory.

Indeed, in this theory, the linear response operator is the
sum of two contributions. There is a regular term, corre-
sponding to the response to perturbations “parallel” to the
attractor(more precisely locally projected along the unstable
manifold). This term is actually a correlation function[2]
and, consequently, it obeys classical relations such as the
fluctuation-dissipation theorem. The poles of its Fourier
transform are called Ruelle-Pollicott resonances[3] or “un-
stable” poles. They give the rate of mixing of the chaotic
system or, equivalently, the relaxation rate to equilibrium for
a perturbation “on” the attractor. These poles are independent
of the observable. Therefore, in our case, they are indepen-
dent of the pair emitting-receiving unit(see Fig. 2). When
focusing on the response to the real frequency one observes
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therefore resonance peaks common to all pairs of units, and
these peaks are also present in the Fourier spectrum of the
corresponding correlation function.

The second term corresponds to the response to perturba-
tions locally projected along stable manifolds—namely,
transverseto the attractor. Therefore, it exists only in the
dissipative case. It does not obey the fluctuation-dissipation
theorem and has drastically different properties than the first
term. In particular its poles(“stable” poles) are expected to
be distinct from the unstable poles. In this paper, we indeed
exhibit such stable poles. To the best of our knowledge, this
is the first example where these poles are explicitly exhib-
ited, though their existence was theoretically proved. More-
over, we show numerically that the stable poles depend on
the pair emitting-receiving unit(see Fig. 3). When focusing
on the response to real frequency one observes thereforespe-
cific resonances peaks(see Fig. 1). This shows that a unit
receiving a periodic signal emitted from another unit may
respond in a specific way to this signal, the amplitude de-
pending both on the signal frequency andon the emitting
unit. Note that according to the discussion above this effect
cannot be observed by studying correlation functions.

The paper is organized as follows. In Sec. II we introduce
the model and discuss its properties. Section III recalls

briefly the main results of the Ruelle linear response theory
used in this paper. An explicit computation of the linear re-
sponse is performed. It shows the explicit contributions of
the network topology and of the nonlinearity in a signal
propagation. In Sec. IV we compute numerically the fre-
quency response curve and discuss the different resonance
peaks. The poles of the complex susceptibility for a few pairs
of units are computed and compared in the Sec. V. Our main
conclusions are then drawn.

II. MODEL

Consider the following dynamical system, originally pro-
posed in the context of neural networks(see[4–6] and ref-
erences therein). The output signal is a function of the
weighted sum of the signals arriving ati at time t and is
given by

uist + 1d = o
j=1

N

Jij f„ujstd…. s1d

The weightsJij ’s may be positive(excitatory), negative(in-
hibitory), or zero(no direct link betweenj andi). They are in
general nonsymmetricsJij ÞJjid. Thus, the matrix of weights,
J, defines an oriented graph such that there is a link fromj to
i if and only if Jij Þ0. The global dynamics can also be
written as

ust + 1d = G„ustd… = Jf„ustd…, s2d

where ustd=huistdji=1
N and where we used the notation

f(ustd)=hf(uistd)ji=1
N . Consider now the case where the non-

linear transfer functionf is a sigmoid[e.g. fsxd=tanhsgxd],
where the parameterg controls the nonlinearity. In terms of
input-output ratio, a unit amplifies weak signals(if g.1),
but with a limited capacity:f “saturates” if the local field is
too strong, and the variations of the output signal are all the
weaker as the local field is big. Thus, the capacity ofi to
retransmit a signal emitted fromk does not only depend on

FIG. 1. (Color online) Modulus of the susceptibilitiesx̂33, x̂45,
and x̂71.

FIG. 2. (Color online) Poles of several correlation functions.

FIG. 3. (Color online) Left column: susceptibilitiesx̂33, x̂36, and
x̂63 and reconstruction by the nonlinear fitting(NLF) algorithm
used to compute the poles. Right column: poles of susceptibility
(squares) and poles of correlations(represented by a star).
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the weight Jik but also on the state of saturation of i when it
receives the signal coming from k. Note also that the Jaco-
bian matrixDGsud is written DGi jsud=Jij f8sujd where f8 is
the derivative off. Therefore, the volume variation is pro-
portional toPi=1

N f8suid. Therefore, in this model, the dynami-
cal contraction is closely related to the saturation of the sig-
moid transfer function.

In order to emphasize the effects of the nonlinearity and
minimize the effect of the network topology, one may as-
sume that the network is fully connected and that theJij ’s are
drawn randomly with respect to some smooth distribution
(uniform, Gaussian, etc.). As an example, one may fix the
average valuefJijg=0 and the variancefJij

2g=1/N (to ensure
the correct normalization of the local field with sizeN). This
example is interesting because the system(2) exhibits a wide
variety of dynamical regimes(static, periodic, quasiperiodic,
chaotic). More precisely, it has been shown in[5] that it
generically exhibits a transition to chaos by quasiperiodicity
wheng increases. Note that the same transition occurs if the
network is sparse[4] with K.2 neighbors(K can be ran-
dom) chosen at random, provided the variance of theJij ’s
scales like 1/K. However, we do not address this case in this
paper since we want to minimize the effect of the network
structure. Note also that this type of transfer function allows
dynamical regimes where several attractors coexist. It has
been indeed shown in[5,6] that, adding a thresholdu to the
local field, there exists a region in the parameter spaceg, u
where two attractors coexist. This region can be analytically
computed. However, in the present paper, the parameters are
located in a region where there is only one attractor and all
initial conditions converge to this attractor.

Let us now assume that the nonlinearity is large enough
so that the global dynamics has a chaotic attractor(with all
Lyapunov exponents bounded away from zero and at least
one positive Lyapunov exponent).

We now add a signal of small amplitudejstd to the output
of some units. Then the evolution of the perturbed system,
denoted byũ, is given by

ũst + 1d = G„ũstd… + jstd = G̃„ũstd…. s3d

Note that the formalism introduced below accommodates the
generalization wherejstd depends also onustd, but we do not
consider this case here.

We want to investigate the capacity of the network to
transmit signaljstd superimposed upon the chaotic back-
ground. This is a complex problem since after a few time
steps the total signal arriving at timet at k includes the sum
of contributions corresponding to different paths followed by
j, with different time delays. Moreover, along a path the
signal can be damped iff is saturatedsf8,1d or amplified
sf8.1d. Finally, the dynamics being chaotic, after a suffi-
ciently long time the signal is distorted by the nonlinearities
and scrambled by mixing.

To tackle this problem we analyze how the difference
ũstd−ustd between the perturbed and unperturbed dynamics
behaveson averageas a function ofjstd. Whenjstd is small
enough and in spite of the initial condition sensitivity intrin-
sic to chaotic systems, it can be shown that this difference is

a linear functional of jstd. This is the content of thelinear
response theorydeveloped by Ruelle[1] for the chaotic and
dissipative1 system. Some aspects of this theory are briefly
recalled in the next section.

III. LINEAR RESPONSE THEORY

The unperturbed dynamical system(2) has a strange(cha-
otic) attractor for sufficiently largeg. Usually, strange attrac-
tors carry a natural probability measure called the Sinai-
Ruelle-Bowen(SRB) measure[7]. If one prepares the system
(2) with an initial macrostatem having a uniform density
[i.e., msdud=du], corresponding to selectingtypical initial
conditions, then, provided that the limit exists, the SRB mea-
sure is the asymptotic macrostater=limt→+` Gtm whereGtm
is the image ofm under thetth iterate ofG. The SRB mea-
sure has several remarkable features which make it
“natural.”2 One of its most important properties for practical
purposes is the following: IfA is some observable(a smooth
function of u), its average with respect tor,

kAl =E Asudrsdud, s4d

is equal to the time average alongtypical trajectories. This
means that “ensemble average” and time average are equiva-
lently for typical trajectories. This is especially useful for
numerical computations(see next section).

Applying a time dependent perturbationjstd to the system
induces time dependent changes in the statistical averages.
More precisely, the natural extension of the SRB measure
defined above is atime dependentSRB measurert. It is

given by the(weak) limit lim s→+` G̃t . . .G̃t−sm. The corre-
sponding average will be denoted byk lt.

It has been established in[1] thata linear response theory
exists for uniformly hyperbolic diffeomorphism.3 In our
framework, this means that, providedjstd is sufficiently
small and for any smooth observableA, the variationkAlt

−kAl is proportional to jstd up to small nonlinear correc-

1Dissipative means here that the phase space volume is contracted
by the dynamic evolution.

2Sinai, Ruelle, and Bowen have indeed shown that the SRB mea-
sure is a Gibbs-like measure. Moreover, it maximizes some version
of a free energy(topological pressure): it has therefore the char-
acteristics of an equilibrium state. A crucial property for the present
work is that a SRB measure has a density along the unstable mani-
folds, but it is singular in the directions transverse to the attractor.
This feature is at the origin of the distinction between unstable and
stable poles of the susceptibility.

3We only know that the system(2) is weaklyhyperbolic; i.e., all
the Lyapunov exponents are bounded away from zero. Neverthe-
less, we will adopt the point of view defended in[1]. If there is a
linear response theory for our system, it is necessarily of the form
Eqs. (5) and (6), since there are no reasonable alternative. What
could happen is that the sum diverges, leading to an infinite re-
sponse. On numerical grounds, one has to check that the time av-
erage used to compute the ergodic average[see Eq.(12)] does not
increase with the sample length.
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tions. In other words,rt is differentiablewith respect to the
perturbation. The derivative is called thelinear response.

The theory developed by Ruelle allows one to compute
the linear response for general perturbations depending both
on time t and stateu and for a general observableA. In our
context, however, where the considered observables are sim-
ply the variables of systems(2) and (3), the linear response
has a simple form, which can be written as

kũlt − kul = o
t=−`

`

xstdjst − t − 1d, s5d

wherexstd represents the averaged Jacobian matrix

xstd = kDGtsudl, s6d

for tù0. Otherwise,xstd=0 (which is consistent with the
requirement of causality).

A remarkable consequence of Ruelle theory is thatxstd is
a bounded function for alltù0. In particular, it does not
diverge exponentially fast, despite the presence of a positive
Lyapunov exponent. As discussed below, this is essentially a
consequence of exponential mixing.

In what concerns network dynamics, Eq.(5) is interpreted
as giving the average response of uniti of the system when
the network is submitted to weak signaljstd. In particular, it
is seen that if only one unitj is perturbed at timet=−1 by a
kick of amplitudee [that is,jstd=eejdst+1d with the Kroe-
necker symbold and thej th unit vectorej], then«xi jstd gives
precisely the meanresponseof unit i at timet. This suggests
to define thesusceptibilityof the network as the Fourier
transform ofxi jstd: namely,

x̂svd = o
t=−`

`

xstdeivt. s7d

This matrix function will be numerically computed and stud-
ied in the next section. We conclude the present section by
analyzing further the structure ofxi jstd in the case of the
dynamical system(1). Here one can decomposexi jstd as

xi jstd = o
gi j std

p
l=1

t

Jklkl−1Kp
l=1

t

f8„ukl−1
sl − 1d…L . s8d

The sum holds on each possible pathgi jstd, of length t,
connecting the unitk0= j to the unit kt= i, in t steps. One
remarks that each path is weighted by the product of atopo-
logical contribution depending only on the weightJij and a
dynamical contribution. Since, in the kind of systems we
consider, the functionsf are sigmoids, the weight of a path
gi jstd depends crucially on the state of saturation of the units
k0, . . . ,kt−1 at times 0, . . . ,t−1. Especially, if f8(ukl−1

sl
−1d).1, a signal is amplified, while it is damped if
f8sukl−1

sl −1dd,1. Thus, though a signal has many possibili-
ties for going fromj to i in t time steps, some paths may be
“better” than some others, in the sense that their contribution
to xi jstd is higher. Therefore Eq.(8) underlines a key point
discussed in the Introduction. The analysis of signal trans-
mission in a coupled network of dynamical units requires us

to consider both the topology of the interaction graphand the
nonlinear dynamical regime of the system.

IV. COMPLEX SUSCEPTIBILITY

One can decompose the response function(6) into two
terms. The first one is obtained by locally projecting the
Jacobian matrix on the unstable directions of the tangent
space. This term will be named the “unstable” response func-
tion. It corresponds to a linear response of the system to
perturbations locally parallel to the local unstable manifold
(roughly speaking, perturbations “on” the attractor). One can
show that the linear response associated with this type of
perturbation is in fact a correlation function, as found in
standard fluctuation-dissipation theorems[1]. Hence, as
usual for correlation functions of a chaotic system,it decays
exponentially(because of mixing) and the decay rates are
associated with the poles of its Fourier transform. More pre-
cisely, these exponential decay rates correspond to the imagi-
nary part of the complex poles of the unstable part of the
susceptibility(8). Thus they will be called “unstable” poles.
More generally, it can be shown that these poles are also the
eigenvalues of the operator governing the time evolution of
the probability densities(which we denoted above asGtm),
the so-called Perron-Frobenius operator[3]. Therefore, these
poles, whose signatures are visible in the peaks of the modu-
lus of the correlation functions, do not depend on the observ-
able, though some residues may accidentally vanish for a
given observable.

The second term4 is obtained by locally projecting the
Jacobian matrix on the stable directions of the tangent space.
It corresponds to the response to perturbations locally paral-
lel to the local stable manifold(namely, transverse to the
attractor). Therefore, it isexponentially dampedby the dy-
namical contraction.(Note that, according to the specific
form of the Jacobian matrix, this contraction is, in our case,
mainly due to the saturation of the sigmoid transfer func-
tion). The corresponding exponential decay rates are given
by the complex poles(“stable” poles) of the stable part of the
complex susceptibility. But here the poles dependa priori on
the observable. One can easily figures this out if one decom-
poses the stable tangent space of a point in the orthogonal
basis of Oseledec modes(directions associated to each of the
negative Lyapunov exponent). The projection of theith ca-
nonical basis vector on thekth Oseledec mode depends oni
andk. This dependence persists even if one takes an average
along the trajectory, as in Eq.(6).

Hence, both stable and unstable terms are exponentially
damped, ensuring the convergence of the series(5), but for
completely different reasons. Moreover, the stable and un-
stable parts of the linear response have drastically different
properties. As a matter of fact, the stable partis not a corre-
lation function and it does not obey the fluctuation-
dissipation theorem. In particular, the unstable poles and

4Note that a linear response theory has also been proposed in[8].
However, it requires the invariant measure to have a density. This is
only true for the conditional measure along unstable manifolds. As
a matter of fact, this theory does not contain the stable term.
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stable poles are expected to be distinct. In this paper, we give
for the first time evidence of this theoretically predicted ef-
fect. Moreover, we show that the stable poles indeed allow
us to distinguish the units in their capacity to transmit a
signal.

For this we first numerically compute the susceptibility
(7) for real values ofv. The computation is based on the
following remark. Let us consider perturbationsjs1dstd
=eejcossvtd andjs2dstd=−eejsinsvtd and letus1d ,us2d denote
the variables of the corresponding perturbed systems:

uskdst + 1d = G„uskdstd… + jskdstd sk = 1,2d. s9d

Then it follows from Eq.(5) that:

skui
s1dlt − kuild + iskui

s2dlt − kuild

= eo
t

xi jstde−ivst−t−1d

= ex̂i jsvde−ivst−1d. s10d

Note that the time-dependent average response to periodic
perturbation is therefore periodic. The linear response at time
t is an infinite sum corresponding to contributions of time
delayed signals following different paths. Since the signal is
sinusoidal, the terms in this sum may interfere in a construc-
tive way (but exponential damping prevent the series to di-
verge, ensuring the existence of a linear response).

Since x̂i jsvd is independent oft, then it is equal(for v
Þ0) to the time average

x̂i jsvd = lim
T→`

1

Te
o
t=0

T

eivst−1dfkui
s1dlt + ikui

s2dltg. s11d

The time-dependent averageskui
skdlt involve an average over

initial conditions in the distant past. One can reasonably as-
sume that the above average overt makes the average over
the initial conditions unnecessary. Then one may write

x̂i jsvd = lim
T→`

1

Te
o
t=0

T

eivst−1dfui
s1dstd + iui

s2dstdg, s12d

where theui
skdstd sk=1,2d are obtained by iterating maps(9).

This provides a straightforward way to compute the suscep-
tibility, where most of the computing time goes into comput-
ing the orbitsuskdstd.

As an example, we performed a numerical computation of
the dynamical system(2) where we take a fixed realization of
Jij ’s, with N=8 units. There is a quasiperiodic transition to
chaos asg increases. The system is studied forg=3.5 corre-
sponding to a positive Lyapunov exponentl1=0.158, while
the second one isl2=−0.183. The system is therefore
weakly hyperbolic(all Lyapunov exponents bounded away
from 0).

The function x̂svd, the Fourier transform of the matrix
(8), has been computed with a resolutiondv=p /2048
<1.53310−3. The average is done with 26 214 400 samples.
We did several runs where we varied the lengthT of the time
average in Eq.(12). We checked that the global structure is
the same. In particular the amplitude of the susceptibility
ux̂svdu does not depend on T(see footnote 3). Also the fluc-

tuations decrease like 1/ÎT according to the central limit
theorem.

In Fig. 1 we have plotted the modulus of the susceptibili-
ties x̂33, x̂45, and x̂71. Comparing these functions, one re-
marks that there are thin peaks essentially located at the same
frequencies, with different heights. Moreover, these frequen-
cies are harmonics of a fundamental frequencysv0,0.166d.
This is expected from the frequency locking in the quasip-
eriodic transition preceding chaos. Some of these frequencies
are also present in the Fourier spectrum of the correlation
functions but with a smaller amplitude and some peaks are
indistinguishable from the background. Instead, all harmonic
peaks are revealed in the susceptibility spectrum.

But we also note that for many peaks, thewidth varies
strongly from a pairi j to another. This means that thereso-
nance strengthdepends on which unit is excited and which
unit responds. In particular, some peaks are very thin, corre-
sponding to an accurate resonance while some others are
broad. In terms of poles, this means that the imaginary parts
are distinct and consequently the corresponding poles are
different (see the next section). Finally there areadditional
peaks strongly dependent on the pairi j .

Thus, a simple glance to Fig. 1 tells us that the frequency
response of a uniti to the excitation emitted by a unitj
strongly depends on the pairi , j . As discussed above and
numerically shown below, this difference comes from the
stable part of the linear response. Consequently, the specific-
ity of the response is revealed only if one consider perturba-
tions transverseto the attractor.(Note that, generically, the
signal is a perturbation, having local projections both on lo-
cal stable and unstable spaces.)

V. UNSTABLE AND STABLE POLES

Resonances correspond to poles in the complex plane. As
a matter of fact, the position of the maximum of the peak
corresponds to the real part of the pole, its width is related to
its imaginary part, and the value of the maximum is related
to the residue. From this observation, we developed an algo-
rithm to estimate the residue width and locations of the
poles. Letv0=vr + ivi be a simple pole ofx̂ andA its resi-
due. If one multipliesx̂ by a phase factoreic, then the real
and imaginary parts rotate continuously, without changing
the modulus. If the pole is close enough to the real axis, then
there exists a phasec such that, on the real axis, the real part
has a characteristic Lorentzian shape symmetric with respect
to vr while the imaginary part is antisymmetric. Then a non-
linear curve fitting allows us to determineA, vr, and vi.
Once a local analysis has roughly determined the poles, a
global nonlinear fit(Levenberg-Marquardt[9]) allows us to
localize the poles with a better accuracy.

In Fig. 2 we have plotted the real and imaginary parts of
the poles of several correlation functions. One notices that all
pairs of units have poles at the same value ofv, within the
error bars. We have also plotted in Fig. 3 the modulus of the
susceptibilitiesx̂33, x̂36, andx̂63 (left column) and the corre-
sponding poles(right column) with the poles of the correla-
tion functions. As expected from Fig. 1 we observe common
poles (unstable poles) but alsodistinct poles (stable poles)
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that, moreover, strongly depend on the pair receiving-
emitting unit.

Finally, note that some poles are very close to the real
axis. Since their imaginary part is related to the coherence
time of the response to a kick, this tells us that the response
to a pulse may subsist for quite a bit long times, though the
underlying dynamics is chaotic.(Recall, however, that the
linear response measures variations of theaveragevalue of
the observables.) This intriguing and exciting aspect will be
developed elsewhere.

VI. CONCLUSION

This paper gives an example of network dynamics where
the nonlinearity induces particularly prominent effects that
cannot be anticipated by the mere analysis of the graph to-
pology. In particular we exhibit a dynamic differentiation in
the capacity that a unit has to transmit information. We also

argue on theoretical grounds and numerically show(see Fig.
2) that the dynamics differentiation is not revealed by corre-
lation functions. It is purely an effect of the dynamics trans-
verse to the chaotic attractor that must be handled with the
proper tools. We show that the linear response gives quite a
bit more information than the correlation function, provided
that its computation takes into account the singularity of the
SRB measure transversally to the attractor. This is the case
with Ruelle linear response theory and this opens the per-
spective for developing an extension of statistical mechanics
for the analysis of networks dynamics with nonlinear units.
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